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Abstract—This paper outlines the formulation of a robust fault
detection and isolation scheme that can precisely detect dn
isolate simultaneous actuator and sensor faults for unceain
linear stochastic systems. The given robust fault detectioscheme
based on the discontinuous robust observer approach wouldeb
able to distinguish between model uncertainties and actuat
failures and therefore eliminate the problem of false alarns.
Since the proposed approach involves precise reconstruoti of
sensor faults, it can also be used for sensor fault identific@n
and the reconstruction of true outputs from faulty sensor ouputs.
Simulation results presented here validate the effectiveass of the
robust fault detection and isolation system.

|I. INTRODUCTION

Faults are deviations from the normal behavior of the plant o

its instrumentation and they can be categorized into: i)itaed
process faults, ii) multiplicative process faults, iiinser faults, and
iv) actuator faults. There exist several fault monitoringqedures
which can be used to recognize and distinguish differenegypf
faults [1]. These fault monitoring procedures can be categd
into: i) fault detection, ii) fault isolation, and iii) fatiidentification.

A survey on design methods for fault detection is given in. [2][

Most of the existing FDI (fault detection and isolation) sofes
are based on measurement residual generation. Generaiddate
is used to facilitate the decision making procedures irealin FDI.

The basic difference between most FDI schemes is the uriigrly

residual generation methods. Few examples of differentdebémes
are the observer based Fault Detection Filters [3]-[5],nal filter
based Proportional Integral Observers [6], Multiple MoAelaptive
Estimators [7], and system identification methods [8].

In this manuscript two types of faults are of concern, i.etyator
faults and sensor faults. The FDI scheme considered herheis
observer based approach. Discontinuous observers subh akding

mode observers have been successfully used in FDI contéxt [9

Design of sliding mode observers for detection and recoogtn of
actuator and sensor faults is presented in [10] and [11peaively.
The precise reconstruction of faults proposed in [10] assuthe
absence of uncertainty. The FDI approaches presented Jnafid
[12] introduce an approximate fault reconstruction schéyenini-
mizing the error between the true fault signal and the recocied
fault signal. In [13], an FDI scheme for a class of nonlineacertain
systems is presented by introducing limitations on thectitre of the
uncertainty. It is important to notice that the precise restnuction
of fault is generally not available in the presence of urasty.
While the FDI schemes presented in [10]-[13] involves ratction
of faults, sliding mode observer based FDI approach predeint
[14] is based on the measurement residual generation. Ththey
FDI scheme presented in [14] assumes precise knowledgeste#rsy

dynamics, a similar FDI scheme which is robust to mismatch

uncertainties is presented in [15]. The residual genergtiesented in
[14] and [15] is based on the sliding mode observer schemeenthe
observer maintain the sliding motion in the presence of ratshed
uncertainties, but when fault occurs, the sliding motiohrisken and
aresidual is generated which contains information regarttie fault.
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Though there are numerous literatures on fault detectioh an
identification, very little work is done on developing robuault
detection schemes. Robust actuator/sensor fault deteigtia chal-
lenging problem due to system modeling errors, extern&lidiances,
and measurement noise. Most of the current fault detectgorithms
are model based and they tent to induce false alarms whenahe p
dynamics differ from the assumed model. This manuscripsqres
a robust FDI scheme that carecisely detect and isolate simul-
taneously occurring actuator faults and sensor faults facertain
linear stochastic system$he proposed approach is an observer based
FDI scheme where a discontinuous observer is used for msidu
generation. The main highlights of the proposed FDI scherae a
« Multiple actuator and sensor faults are considered
« Proposed technique involves reconstruction of sensotsfand

therefore this approach can be used for sensor fault ideattdin

and reconstruction of true outputs
« There are no constraints on system uncertainties, bothhedtc

and mismatched uncertainties are considered
« Present scheme can be easily extended to nonlinear sysgems b
considering Lipschitz continuous affine nonlinear termshwi

known Lipschitz constant [13], [15]

The structure of this paper is as follows. A detailed forrtioka of
he observer based FDI scheme is first given. Afterwardsrekelts
from numerical simulations and the concluding remarks arengin
sections Il and IV, respectively.

Il. OBSERVERBASED FAULT DETECTIONFILTER

Let (Q,F,{Fi}i>+,,P) denotes a complete filtered probability
space. Consider am"-order stochastic system of the following form:

Xl(t) = AuXi(t) + Ar2Xo2(t) + Wi (t)

t Xz( ) = An X,y (t) + A5 X5 (t) + Bu(t) + W, (t)
Y1(t) = CuiXu(t) + Cr12Xa(t) + V()

Y2 (t) = CarXi(t) + C22Xoa(t) + ye(t) + Va(t)

where W (t) and W2(t) denote stochastic disturbances aAd(¢)

and V;(t) indicate measurement noises. The state vectigt)
and X(¢), are of dimensionsX;(t) € " " and Xz(t) € R",
respectively. The true state matrice$;; € R x4,
RO Ay € R Ay € K777, and the control distribu-
tion matrix B € *"*", are assumed to be unknown. The desired input
signal is denoted as,(¢) and u.(¢) indicates the error in applied
control, u(t), due to actuator faults, i.e.,

u(t) = ua(t) + ue(t) @)

The stochastic measurement vecto¥s,(¢) and Yz(¢), are of di-
mensionsY(t) € R™ andY(t) € R™2, respectively. The output

f &
t

eraatricescu, C12, C21 andCaqs, are assumed to be known. The mea-

surement noise[VT (t) V()] = V(t) € R™, is assumed to be
zero-mean Gaussian white noise process, Wét) ~ N (0, R3(7)).
The vector,y.(t), indicates sensor failures and is modeled as

ye(t) = £(ye(t),t), ye(to) =0 @)
where f(-) is an unknown operator. Stochastic external disturbance

(WT(t) WI®)]" = W(t) € R" is modeled as a linear system
driven by a Gaussian white noise process, i.e.,
W(t) = L(W(t),t) + W(t),

W(to) =0 @)



wherelL(+) is an unknown linear operator aMy (¢) € R, is a zero-
mean Gaussian white noise process, W.(t) ~ N(0, Q5(7)).

After appending the sensor error dynamics given in (3), the

extended system can be written as

Assumption 1. Assume the sensor faults are not instantaneous and Xl(t) Amy,  aAmy,  BAmp, 0 X1 ()7
therefore there exist a known conservative upper bounf{en(t), t) Xo., (t) é Amy Aoy 0 0 Xo, (1)
such that X%’ | 0 0 Ay 0 Xoag(t)
E(ye(t), )] <o), VE>to ye(t) 0 0 0 Ayl Ly ]
where| - | denotes the Euclidean norm. 0 I 0 0 0] D(1)]
0 0 X1 0 0| [D:2(t)
The external disturbancéW (), is mean square bounded [16], + 1B, wi(t)+ g % LB 0| | <)
[17], i.e., 0 0 0 o 1| Lh() ]
sup E[W(t)WT(t)] S K mo Xmo
t>to whereh(:) = f(-) — Ay ye. and Ay, € R™2*"2 is a user selected

whereK is a constant matrix whose elements are finite. The assurr{élHrW'tZ matrix. LetZ(t) =

(known) model of the plant in (1) is given as

T
[(XT(t) X3,() X3,() ye®)],
now the above extended system can be rewritten as

Sy (£) = Ay Xoms (£) + Ay Xoms (8) - Z(t) = FZ(t) + Gyua(t) + ChiDr(t) + G2 Do(t) + g?’fl(t) ©)
).(77L2 (t) = Am21 Xmq (t) + A7n22Xm2 (t) + Bmud(t) + G4 ()
. Amll aAm12 ﬂAm12 O
Define the model-error vecto®, (t) € R"~" andD2(t) € R" as 14 A 0 0
where F" = | o® Ju2t 02 a4 o | and
D1(t) = AA1 X1 (t) + AA12X2(t) + W, (t) ®) 0 0 7622 A
Da(t) = AAz X1 (t) + AdoaXo(t) + ABua(t) + Wa(t) ve
I 0 0 0
where AA;, = A — Amn, AAip = Az — Am12, AAy = N 0 ir 0 0
Agt — Ay, AAgy = Aoy — Ay, andAB = B — By, G&[Gi G Gs Ga] =) 9 1B, 0
Assumption 2. Given the system parameter uncertainties are 0 0 o I
bounded and the system states are bounded in mean squaes sens c c c 0
an upper bound on the model error vectDx(t) can be obtained as Let H = Cll 3012 gcm 7|+ the measurement equations can
21 22 22

P(D®)] < a(t) =

That is,|D(¢)| is almost surely (a.s.) upper bounded jagt) for all
t > to.

1, Vt>to

Now the plant dynamics in (1) can be written in-terms of known

parameters as

Xl (t) = Amqu (t) + Am12X2(t) + Dl(t)
X2(t) = Am21 Xl( ) + Am22X2(t) + Bmud(t) + D2(t) + Bue(t)
Re-parameteriz&(t) a

the corresponding changes T (),

be rewritten asY (t) = HZ(t) + V(t). Now the system in (1) can
be written as the following dynamically equivalent form

Z(t) = FZ(t) + Gsua(t) + G1D1(t) + GoDa(t)
+ G3¢(t) + Gsh(-) (10

Y(t) = HZ(t) + V(1)

Remark2. Even though the above representation of the plant is a non-

minimal realization, the observability of the extendedtegsmay be

obtained by making appropriate changes to the state mdtiand
D> (t), andh(-).

Consider the following partition of71 asn — r column vectors,
G2 asr column vectorsGs asr column vectors, and+s asms

Xa(t) = aXoq (1) + 525 (1) ) column vectors as shown below
whereXs,, (t) € X", Xa,(t) € R", a and 3 are user selected scalar Gi=gn e 1(nn]
parameters. NowX(t) can be written asXs(t) = aXaz,(t) + G —
BXa,(t). SelectX, (t) and X, (t) as 2= [g2n g2 gor]
) . Gs = [g:n g32 ggr]
Xo, (t) = EAm21 X1 (t) + Amgy X2, (1) + E'D2(t) Gi=[gu g gams, |
8) . Lo
. 1 1 (
Xo, (£) = Ampy X, () + = Brmtta(t) +  Bue(t) Also consider the individual elements of the vectq(s), D(t), and
3 3 h(-), ie.
Remarkl. One of the main challenges in the design of observer Gi(t) D1 (t) hi(v)
based FDI scheme is the presence of coupled system undes@nd — »4) — | D(t) = and h(-) = :
actuator faults [15]. In the presence of coupled system rtaioties y ’ . .
and actuator faults, it is difficult to design an observert tyields (1) Du(t) by (+)

measurement residual which is only sensitive to the aatifatdts.
Notice that the re-parametrization & (¢) given in (7) allows
decoupling of system uncertainties and actuator faultshasvis in

®).

Assumption 3. Assume there exists a bounded vecf¢t) € R"
such thatBu.(t) = Bn((t), i.e

¢(H) = By Bu(t) and [C(1)] < (), Vit >t

Now the extended system in (9) can be written in summatiom for
as

n—r

)+ > guDi(t) + Y g2 Dnrs(t)
i=1 j=1

+ Z g3rCr(t) + Z gahi(-)
k=1 =1

Z(t) =
(11)
+ G3ug(t)



[I>

Define G,
(€@

Gi Ga], Go £ [G3 G4, and n’(t)
h”(-)]". Now (11) may be rewritten as

r+mo

2(1) = FZ(0) + Gsua) + 361D + Y Gayny(t) (12)

where Gy, and G, are the k™ column vectors ofG, and G»
matrices, respectively. Now = 1, 2, ..., r + 1 observers of the
following from are considered

fe<r
Y

Z (t)=FZ'(t) + L' [Y(t) - Hze(t)] + Gaua(t)+

(13)
n -1 r+mao
S Gunl )+ Y Gaf () + Y Goy(h)
i=1 j=1 j=0+1
fl=r+1
7 () = FZ () + L' [Y(t) - Hze(t)] + Gaua(t)+
(14)

r+mao

STGuuit)+ Y Gav(t)
i=1 j=1

where LY e RFr+m2)xm g the observer gain correspond-

ing to the ¢" observer. The observer inputs are denoted
[V () Vs ()] 20! (t) € R, and
(i (t)

Equations (13) and (14) correspond to the typical observedeain
The observer gainL‘ and the observer inputg‘(t) and v*(t)

pe@®]" Lty e R, V=1, 2, ..., r+1

and therefore the stability of the observer error dynamiesrgin (16)
is depicted either as moment stability or stability in proibatic
sense. The stability in probabilistic sense is usually kmasalmost
sure (a.s.) stability and it is defined as follows [16]:

Definition 1. The stochastic procesze(t) is asymptotically stable
with probability 1, or almost surely asymptotically stable, if
P(Z'(t) =0 as t—oo) =1 17)
Notice that the almost sure stability of the observer ersor i
impossible due to the persistently acting measuremeners(g).
Therefore it is desirable for the observer error correspundo the
" observer,Z*(t), to have a dynamics that follows

dZt, (1) = { [F - L“H} Zﬁl(t)}dt +LY4B(t)  (18)

Let Z°(t) = Z“(t) — ZL,(t), now subtracting (18) from (16) yields

L

iz 0= { [P~ 20+ 56 [Dutt) - )]

b

(19)

r+mao

+ 3 Gas [ni(0) — ()

88iven next is an approach for the selection of the observier §a

and the observer inputa’(t) and v‘(t) corresponding to the™
observer based on the stochastic Lyapunov approach.

Since the only information regarding the true observerregaon
the formlof measurement residual, one do not have full adcetise

signal Z'(¢), i.e., one only has access ¥ () = HZ'(t). Based

corresponding to thé" observer are selected so that the generateuh (19),d3~/(t) can be written as

residual obtained from observers given in (13) is asymgadi stable

if there is no fault in the/™ actuator and the residual obtained from diil(t) _ {H [F o LZH] é’[(t)—k

the observer given in (14) is asymptotically stable despiteactuator
or sensor fault occurrences. _ N

Define the observer error aZ‘(t) Z(t) — Z*(t). After
subtracting (14) from (11), the observer error dynamicstkmawritten
as

7 (1) = [F— L' Z' () - L'V()+

> Gu
i=1

It is important to note that the solution to the stochastitedential
equation given in (15) cannot be based on the ordinary meaars
calculus because the integral involved in the solution ddpeon
V(t), which is of unbounded variation, i.ef [V (t)V (¢t + 1) =

r+mao

(15)
[P0~ ] + 3 Gy )~ 1)

R4(7). For the treatment of this class of problems, the stochas

differential equation can be rewritten imlform as [18], [19]

dZ'(t) = { [F - L“H} Z'(1) + an G, [Di(t) - uf(t)] +

r+mo

Y- Ga [m(0) = vi(0)

(16)
}dt — L'dB(t)

where the zero-mean Gaussian white ndigg) is written as the
increments of stationary Wiener process with zero-mean taed
correlation of increments

E[{B(r) - BO}B() - B} | = Rlr —¢|

Details on stochastic dtcalculus can be found in [19]. The observer
error corresponding to thé" observerZ(t), is a stochastic process

r+mao

> 161 [Dt) ~ )] + Y HGa [~ v3(0)] par
i=1 j=1
Based on Assumptions 1 and 3, define an upper boung(énas
In() < v(t), Vt>to

Theorem 1. Given the Assumptions 1, 2, and 3, the individual fault
detection filtelrs given in Eq13) guarantee almost sure asymptotic
stability of Y (¢) if there is no fault occurrence in thé" actuator
and the fault detection filter given in Eq14) guarantees almost
sure asymptotic stability var (t) despite any actuator or sensor
fault occurrences, if the observer gaifX corresponding to the™
Qgserver is selected so that the following matrix Lyapumeguality

Is satisfied

[F _ L[H]THTHPZHTH+
(20)
HTHP'HTH [F - L‘H] +Q'<0

and the observer inputs corresponding to tHeobserver are selected
as

i) =san{ (¥ )" 1P T HG | ),

(21)
Vi=1, ...,n
LN 4 T 27T _
i) = sanf (3'(0) " 1P 1" G | (0 -
Vj:L o, Tt me



where P’ € Rrtrdme)x(nirims)  gnd  Q° € from the observer given in (14) can be directly used for sefedt
Rntrma)x(ntrima) gre positive definite symmetric matrices andietection. That is, ify.(t) = 0, then there is no sensor fault and
sgr{-} denotes the signum function or the sign function. if g, (t) # 0, then the nonzerdg., (¢) indicates a fault occurrence

. . in the i" sensor. Moreover, by subtractig (¢) from the measured
Proof: Construct a Lyapunov function candidate of the fombutputzyields the true systemyoutput 9.(t)

~ ~ T ~
voy'e) = (y[(t)) HP'HTY'(t). Now using the It for-
Y, [1l. NUMERICAL SIMULATIONS
mula [19],dV (Y (t)) can be calculated as

Numerical simulation results are presented in this section

oy, oy T 01T r o om validate the efficiency of the proposed FDI scheme. Consaler

av(y (1)) = (3’ (t)) { [F— L H} H HP H H+ stochastic system of the form given in (1) where the trueesyst
matrices are given as

=L
H"HP'H"H [F—L’“’H] }y (t) AL Joop o], [-13 001
. Yo oo P01 PP T[-012 —1.8)°
52\ T 1ty T i
+2(Y (1)) HP'H'"HY Gy |Di(t) — ui(t) _[-09 —o0.011 [ 24 -023
( ) ; [ ] A2=193 34| B=| 011 15
r+mo
~ 0 T :
19 <y (t)) HP'HTH Z G, [nj(t) _ uf(t)} }dt and the assumed system matrices are
i=1 -
o . A7n11 = |:8 8:| 5 A7n12 = |:(1) (1):| 5 By = {3&% 200?1:|
After substituting (20),£V (§°) can be written as — :
. R e S 4 _[-099 0
ev@) < (3'0) QF® ma S0 —nagp AmmT 0 298
e NT .o ¢ The system output matrices are given aé' =
JrQZ1 (y (t)) HP'H"HG,, [Di(t)—m(t)] Ioxz Oaxa]”, Cro - [O2xz  Toxz]”, Ca =
rime o, , 92954 11574 , Cp = 01'433 _024:;1 . For simulation
+2 Zl (y (t)> HP'H" HG»; [ﬁj(t)—l’j(t)] purposes, the external disturbance is modeled W = 0
=

and W (t) = [Wai(t) Wao(t)]" is given as

where the operato£{-} acting onV'(x, t) is defined as
p {-} acting onV'(x, ) Wai(t) = —War (t) + Wa(t)

eV (x,1) = lim %E[dV(X(t), )X (t) = x| (23) Was(t) = —=Waa(t) + Wa(t)
Substituting (21) and (22) yields where[Wi (t) Wa(t)]" = W(t) is zero-mean Gaussian white noise

process with

V(g < - (ﬂl(t)yQ@l(tH E [W(t)WT(t + 7')] = 1072 X I2x20(7)

- ~0, \T 1ty T
2y { <y (t)> HP H" HG1;Di(t)— The measurement nois®(t) 2 V(t) € R®, is assumed to be zero-
=1 mean Gaussian white noise process with
T
() HP“HTHQMIﬂ(t)}Jr E [V(t)vT(t + r)] =102 x Igxe0(7)
rime T Note thatD; = 0 and D2 (t) is given as
2 (5'®) HP BT HGm;(H)—
=1 Do (t) = AA21X1(t) + AA2Xo (t) + ABud(t) + W, (t)
N €7 T . where the desired control inpuis(t) is given in Fig. 1. For the
| (y (t)) HEH Hg2”|u(t)} re-parametrization of the system states, the constanasid 3 are
selected asy = 3 = 1. Note that the two possible sensors faults are
Thus
~f ~f r L~0
eV’ ®) < - (3'0) Qu'® (24) T =
Therefore the = (r + 1) observer in (14) is almost surely asymp- -
totically stable despite the occurrence of any actuatoensar faults. =
Based on the given proof one could easily make the argumanifth S
there is no fault occurrence in tH® actuator, where < ¢ < r, then
the ¢ observer given in (13) is almost surely asymptotically ktab ,
Thus any observed residugf (¢), will indicate a fault occurrence in

the ¢ actuator ] ' Timé(set) © 7
Any observed residual in thé" observer given in (13), where ) )
1 < ¢ < r, indicates a fault occurrence in i@ actuator. Based on Fig. 1. Desired Control Input

the observability condition one could easily show that tegneated
or the observer generated sensor error teyns$t), asymptotically associated with the fifth and sixth outputs. Two fault sciersaare
approaches the true sensor errgr(t). Thereforey.(t) obtained considered here and the details on the fault scenarios are



1) Fault Scenario I: For the first fault scenario, the faults areFor simulation purposes the upper boundsm@#\(¢), ¢(t), andh(-)
associated with the second actuator and the fifth outpubsensare selected as

The actuator fault occurs at thirty seconds (sec) and theosen Do, (8)] <10 |Da, ()] < 20
fault occurs at sixty-five sec. Given in Fig. 2 are thgt) and IG(t)] <4 IC2(t)] <3
ye(t) corresponding to the first fault scenario. |hi ()] < 2 |ha(t)] < 2
2) Fault Scenario II: For the second fault scenario considered, it o o
is assumed that the faults are associated with the firsttactua
the fifth and the sixth output sensors. The fault associatec
with the first actuator occurs at thirty sec. The fifth andIsixt T =2} ] [ =t
output sensor faults occur at sixty-five sec and eighty-five ] :
sec, respectively. Given in Fig. 3 are the(t) and y.(¢) = ~ :
corresponding to the second fault scenario. QN il Z, i
. N |
) e (=€l T Timé(set) & - T Timé(sed) & -
e s (a) Model Error (b) Input Error
e <
= ! s . —h3
i - ~
T Timé(set) ¢ - T Timé(sel) ¢ - =
(a) Actuator Faults (b) Sensor Faults -
Fig. 2. Fault Scenario | -
T Timé(sed) & -
(c) Output Error Rates
. =zl [ T T I Fig. 4. Fault Scenario I: Error Vectors
—Te '
" 6 --Yed N
D 2 L . ‘ =T . S 75
) s £
o 20 Tlmé;(seaé) 100 20 0 20 Tlmé;(seaé) 100 20 > , (;;Zs
(a) Actuator Faults (b) Sensor Faults
Fig. 3. Fault Scenario Il "7 Timé(set) ¢ * Mo w Timé(see) * *
. a) Residual b) Estimated Sensor Faults
Note that for the system considered here, there are two tactua @ (b)
and therefore three different observers are designed. &r fault £y 5 Fault Scenario I: Observer Residual and Estimatets@eFaults

scenarios considered}, is selected asly = 02x2, P’ is selected

asP*=10"%x1I,V¢ € {1, 2, 3}. The observer gain is calculated

asL'=1?=13

49.9299 —0.2986 —0.2402 0.7390 —2.5331 —0.3157
0.3753 49.8876 —0.3033 —0.2856 0.7403  —1.7170
0.1847 0.0195 24.9291 —0.3715 1.0916  —0.7319
—0.3075 0.3204 0.5508 24.6784 1.2925 1.9531
0.1847 0.0195 24.9291 —-0.3715 1.0916  —0.7319
—0.3075 0.3204 0.5508 24.6784 1.2925 1.9531
—47.3614 —85.1196 —21.7003 115.5758  49.6501 —0.7843
120.0819 —76.9340 —64.9756 —21.7627  0.8362 49.8110

The extended output matrik and the matrixG' can be calculated

as

O2x2  O2x2  O2x2

H:{Cll Ci2 Ci2 Oax2 _ Iox2  O2x2  O2x2
Cor Caz Co  Iax2|’ O2x2  Bm  0O2x2
O2x2  O2x2  I2x2

Details on the results obtained for both fault scenariogasmen next.

Given in Fig. 5 are the generated residual and the estimatesbs
errors corresponding to the first fault scenario. Figure B@atains
the measurement residual generated for observer one andltheo
first two kinks in the residual are due to the start of inputli@agion
that occurs around five seconds and the leveling-off thetitputs
steady state value around twenty seconds. Notice the jumipserver
two residual around thirty seconds due to the fault occeeeim
the second actuator. Figure 5(b) contains the estimatesbsenrors
obtained from the third observer. Note that the estimatedaeerror
is similar to the true sensor error given in Fig. 2(b).

2) Fault Scenario II: Given in Fig. 6 are the error vectors,
D»(t), ¢(t), andh(-) corresponding to the second fault scenario.

The upper bounds on error vectors used here are the same upper

bounds used for the first fault scenario.

Given in Fig. 7 are the generated residual and the estimatesbs
errors corresponding to the second fault scenario. Fig@ecbntains
the measurement residual generated for observer one anélotioe
the sudden increase in observer one residual around tladynsls
due to the fault occurrence in the first actuator. Figure €(jtains

1) Fault Scenario I: Given in Fig. 4 are the true error vectors,the estimated sensor errors obtained from the third obseNae

B,

D- gt) = AA» X,y (t) + AAQQXz(t) + ABud(t) + W, (t), C(t) =
Bu.(t), andh(-) = £(-) corresponding to the first fault scenario.given in Fig. 3(b).

that the estimated sensor errors are similar to the trueos&msors



Fr T g N O O =1
Q]n .,' /-\—1
ey =
Q 5
o 20 Tlmé‘)(seaé) 100 120 7‘0 20 Timé:l(ses(gl) 100 120
(a) Model Error (b) Input Error
. e
< i
= H Lt
o 20 Timé)(se%) 100 120
(c) Output Error Rates
Fig. 6. Fault Scenario II: Error Vectors
< = j
ey = -
- Moaabis o [—He
ey --Ye
) 20 Timé)(se%) 100 120 o 20 Timé‘)(sesé) 100 120
(a) Residual (b) Estimated Sensor Faults
Fig. 7. Fault Scenario II: Observer Residual and Estimateas&r Faults

IV. CONCLUSION

Robust actuator/sensor fault detection is a challenginglpm due
to the effects of modeling errors, system process noise, naga-
surement noise. This manuscript outlines the formulatioa mbust
fault detection and isolation scheme that can preciselgadeand
isolate simultaneously occurring actuator faults and sefaults for
uncertain linear stochastic systems. The given robust &eikction

scheme would be able to distinguish between model unctgsin [15)

and actuator failure and therefore eliminate the problenfatfe
alarms. The presented approach involves precise recotistruof
sensor faults and therefore this approach can be used feorstault
identification and the reconstruction of true outputs framltfy sensor
outputs. The proposed approach is an observer based faedtide

and isolation scheme where a discontinuous observer is fmsed

residual generation.

The proposed approach assume conservative upper bounts on )

system uncertainties, the actuator faults, and the semsidt rates.
A bank of discontinuous observers is designed for fault ciete

can be directly used for sensor fault detection, isolatind @lenti-
fication. Moreover, by subtracting the estimated sensarrirom
the measured outputs, true system outputs can be genefdied.
simulation results reveal clear indication of actuatoittadespite the
presence of matched system uncertainties and externarlzisices.
Moreover, the estimated sensor errors are identical tortteesensor
error regardless of the measurement noise present.
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and isolation scheme where the number of observers is based o

the number of actuators. The observer gain and the discmntin
observer inputs are selected so that the observed resil@ipst
surely asymptotically stable if there is no actuator fadtwrence.
As a result, any observed residual would indicate a fauluoence
in the corresponding actuator. In addition to the bank ofeolers
designed for actuator fault detection, a robust discootiswbserver
is designed so that the estimated or the observer generateswbrs
error terms asymptotically approaches the true sensor. &rhere-
fore, the sensor error estimates obtained from the robusereér



